TRPV2 ion channels expressed in inhibitory motor neurons of gastric myenteric plexus contribute to gastric adaptive relaxation and gastric emptying in mice.
نویسندگان
چکیده
Gastric adaptive relaxation (GAR) is impaired in ~40% of functional dyspepsia (FD) patients, and nitric oxide (NO) released from inhibitory motor neurons plays an important role in this relaxation. Although the underlying molecular mechanism of GAR is poorly understood, transient receptor potential channel vanilloid 2 (TRPV2) mechano- and chemoreceptors are expressed in mouse intestinal inhibitory motor neurons and are involved in intestinal relaxation. The aim of this study was to evaluate the distribution of TRPV2 in inhibitory motor neurons throughout the mouse gastrointestinal tract and the contribution of TRPV2 to GAR. RT-PCR and immunohistochemical analyses were used to detect TRPV2 mRNA and protein, respectively. Intragastric pressure was determined with an isolated mouse stomach. Gastric emptying (GE) in vivo was determined using a test meal. TRPV2 mRNA was detected throughout the mouse gastrointestinal tract, and TRPV2 immunoreactivity was detected in 84.3% of neuronal nitric oxide synthase-expressing myenteric neurons in the stomach. GAR, which was expressed as the rate of decline of intragastric pressure in response to volume stimuli, was significantly enhanced by the TRPV2 activator probenecid, and the enhancement was inhibited by the TRPV2 inhibitor tranilast. GE was significantly accelerated by TRPV2 agonist applications, and the probenecid-induced enhancement was significantly inhibited by tranilast coapplication. Mechanosensitive TRPV2 was expressed in inhibitory motor neurons in the mouse stomach and contributed to GAR and GE. TRPV2 may be a promising target for FD patients with impaired GAR.
منابع مشابه
Upregulation of bile acid receptor TGR5 and nNOS in gastric myenteric plexus is responsible for delayed gastric emptying after chronic high-fat feeding in rats.
Chronic high-fat feeding is associated with functional dyspepsia and delayed gastric emptying. We hypothesize that high-fat feeding upregulates gastric neuronal nitric oxide synthase (nNOS) expression, resulting in delayed gastric emptying. We propose this is mediated by increased bile acid action on bile acid receptor 1 (TGR5) located on nNOS gastric neurons. To test this hypothesis, rats were...
متن کاملSecretin-induced gastric relaxation is mediated by vasoactive intestinal polypeptide and prostaglandin pathways.
Secretin has been shown to delay gastric emptying and inhibit gastric motility. We have demonstrated that secretin acts on the afferent vagal pathway to induce gastric relaxation in the rat. However, the efferent pathway that mediates the action of secretin on gastric motility remains unknown. We recorded the response of intragastric pressure to graded doses of secretin administered intravenous...
متن کاملGastrointestinal Motility Changes and Myenteric Plexus Alterations in Spontaneously Diabetic Biobreeding Rats
BACKGROUND/AIMS Type 1 diabetes is often accompanied by gastrointestinal motility disturbances. Vagal neuropathy, hyperglycemia, and alterations in the myenteric plexus have been proposed as underlying mechanism. We therefore studied the relationship between vagal function, gastrointestinal motiliy and characteristics of the enteric nervous system in the biobreeding (BB) rat known as model for ...
متن کاملNew aspects of gastric adaptive relaxation, reflex after food intake for more food: involvement of capsaicin-sensitive sensory nerves and nitric oxide.
To accommodate the intake of food or liquid, gastric reservoir functions are important as the physiological reflex. There exist two major responses as a reservoir function of the stomach; adaptive and receptive relaxations. Adaptive relaxation is a reflex in which the fundus of the stomach dilates in response to small increases in intragastric pressure when food enters the stomach. Receptive re...
متن کاملMucosal acid challenge activates nitrergic neurons in myenteric plexus of rat stomach.
We tested the hypothesis that intrinsic neurons of the rat gastric myenteric plexus can be activated by an acid (HCl) challenge of the mucosa. Activated neurons were visualized by immunohistochemical detection of c-Fos, a marker for neuronal excitation. The neurochemical identity of the neurons activated by the HCl challenge was determined by colocalizing c-Fos with a marker for excitatory path...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 304 3 شماره
صفحات -
تاریخ انتشار 2013